Alcator C-Mod Predictive Modeling

Alexei Pankin, G. Bateman, A. H. Kritz,

Lehigh University Physics Department
16 Memorial Drive East, Bethlehem, PA 18015

and the Alcator C-Mod team

MIT

American Physical Society DPP Meeting
Québec City, Canada, 23-27 October 2000


Abstract

Predictive simulations are carried out using the BALDUR 1-1/2-D transport code for L- and H-mode discharges in the Alcator C-Mod tokamak. The plasma densities in these C-Mod discharges (from 0.9 to 3.8·1020 m-3) are higher than the densities in other tokamaks that we have simulated. Three transport models are used in these simulations: the standard Multi-Mode model (MMM95), a new version of the Multi-Mode model (MMM99), and the Mixed-Bohm/gyro-Bohm (JET) model. It is found that the Bohm term dominates in the Mixed-Bohm/gyro-Bohm model, while the Multi-Mode models have gyro-Bohm scaling. The simulated density profiles are found to be systematically flatter than the experimental data. The calculated temperature and density profiles for each of the three models are found to match experimental data with an average rms deviation of 18% (normalized by the corresponding central experimental values).

DoE contracts DE-FG02-92-ER-54141 and DE-FC02-99ER54512.


The BALDUR code: 

Predicts temperature and density profiles in tokamaks using
theoretically derived transport models

input

 

computes
\bgroup\color{black}
% latex2html id marker 1573
$\left.
\small
\begin{array}...
...ependent\\
boundary\\ conditions \\
\\
\\
\end{array}
\right\} $\egroup \bgroup\color{black}$
\small
\begin{array}{c}
\underbrace{%
\begin{array}{c}...
...\;Bohm/gyroBohm\\
Multi-Mode\;Model\;99
\end{array}
}
\end{array}
$\egroup \bgroup\color{black}$\left\{ \small
\begin{array}{l}
\circ\ evolution\ of\ te...
...stabilities\ (e.g.,\ sawtooth\\
instabilities).
\end{array}
\right. $\egroup


The Multi-Mode Model (MMM 95)1 2


Multi-Mode Model - combination of theory based transport models

Multi-Mode Model consists of three components:


The Multi-Mode Model: 
Weiland contribution for ITG and TEM modes

Principal Contribution to Transport in the Most of Plasma Core

New Multi-Mode Model (MMM 99)3


The Mixed Bohm/gyro-Bohm (JET) Model4

Empirically based model
Combines three major terms:
\bgroup\color{black}${\alpha_{e,i}^{B}\frac{cT_{e}}{eB}\left(L_{p_{e}}^{\ast
}\...
... ^{-1}q^{2}\left\langle L_{T_{e}}^{\ast}\right\rangle
_{\Delta V}^{-1}}$\egroup \bgroup\color{black}${+\alpha _{e,i}^{gB}\frac{cT_{e}}{eB}\left(
L_{T_{e}}^{\ast }\right) ^{-1}\rho ^{\ast }}$\egroup Bohm term: originally developed to fit JET data
\bgroup\color{black}${+n_{i}\delta ^{1/2}\frac{\rho _{i\theta
}^{2}}{\tau _{ii}}k_{2}^{neo}}$\egroup gyro-Bohm term: required to fit discharges in smaller tokamaks
$L_{T_e}^{\ast
}=\frac{T_{e}}{a}\left( \frac{dT_e}{dr}\right) ^{-1}$ neoclassical term: dominates ion thermal transport near the magnetic axis
where 
$L_{p_{e}}^{\ast }=\frac{p_{e}}{a}\left( \frac{dp_{e}}{dr}\right)
^{-1}$, $\rho ^{\ast }=\frac{M^{1/2}cT_{e}^{1/2}}{aZ_{i}eB_{T}}$,
$\delta=\frac{r}{R}$, $k_{2}^{neo}=\frac{0.66+1.88\delta^{1/2}-1.54\delta }{1+1.03\nu _{\ast
ii}^{1/2}+0.31\nu _{\ast
ii}}\left\langle\frac{B_{0}^{2}}{B^{2}}\right\rangle $
$\left\langle \frac{B_{0}^{2}}{B^{2}}\right\rangle
=\frac{1+1.5\delta \left( \delta +\left( 1+0.25\delta ^{2}\right)
dR_{0}/dr\right) }{1+0.5\delta dR_{0}/dr}$,
$\rho _{i\theta }$  
riq is poloidal gyroradius, n*ii is ion collision frequency;

constants 

$\alpha _{e}^{gB}=2\alpha
_{i}^{gB}=3.5\times 10^{-2}$   and  $R=0.68$
are empirical parameters.


Alcator C-Mod Tokamak5

Compact, High-field, High-density Divertor Tokamak

Typical Parameters

R=0.68 m
a
=0.22 m
BT
<9 T
I
P<2 MA

k<1.85

d<0.6

ne
< 1.5·1020 m-3
Ti~Te<6 keV
ICRF Auxiliary Heating


C-Mod Discharges Considered

L-Mode Discharges

C-MOD shot 950407013 960229042 960126007 960301009
R (m) 0.673 0.673 0.673 0.672
a (m) 0.210 0.219 0.217 0.218
k 1.64 1.64 1.65 1.61
d  0.42 0.42 0.41 0.44
BT (T) 5.38 5.38 5.24 5.42
IP (MA) 1.01 1.00 0.80 0.83
<ne>·1020 (m-3) 1.52 1.82 0.93 1.50
Zeff 2.02 2.02 2.38 1.85
dr*(0) (m)  0.0094 0.010 0.0085 0.011
Paux (MW) 2.7 2.2 1.4 2.8

H-Mode Discharges

C-MOD shot 960116024 960116027 960214017
R (m) 0.676 0.676 0.677
a (m) 0.221 0.219 0.222
k 1.65 1.65 1.59
d  0.41 0.42 0.41
BT (T) 5.22 5.22 5.21
IP (MA) 1.01 1.02 1.02
<ne>·1020 ( m-3) 3.17 3.86 3.36
Zeff 2.40 1.41 1.49
dr*(0) (m) 0.0099 0.0096 0.0092
Paux (MW) 2.35 2.7 2.5
All the discharges above have much higher densities,
than it was simulated before with BALDUR.


Statistical Analysis
Criteria for comparison of the BALDUR results with experiment

$\sigma ^{\left(
k\right) }$


Statistical Results

  960116024 960116027 960214017
MMM95 JET MMM95 JET MMM95 JET

fne
0.025 0.002 -0.006 -0.002 -0.050 -0.037
fTe 0.062 0.031 0.100 0.071 0.057 -0.032
fTi 0.139 0.111 0.147 0.116 0.130 0.046
snerel 0.075 0.064 0.072 0.060 0.101 0.068
sTerel 0.045 0.030 0.115 0.041 0.096 0.102
sTirel 0.095 0.074 0.167 0.061 0.062 0.046

 

  960126007 950407013 960301009 960229042
MMM95 JET MMM95 JET MMM95 JET MMM95 JET

fne
-0.067 -0.080 0.027 0.043 -0.043 -0.060 -0.035 -0.049
fTe -0.492 -0.241 -0.065 -0.137 0.088 -0.098 -0.033 -0.058
fTi 0.069 0.268 -0.087 -0.179 0.070 0.091 -0.295 -0.303
snerel 0.081 0.040 0.048 0.042 0.074 0.076 0.123 0.095
sTerel 0.514 0.307 0.057 0.079 0.156 0.152 0.034 0.050
sTirel 0.048 0.178 0.145 0.195 0.042 0.049 0.253 0.265

Alexei Pankin 2000-11-05